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Measured sensitivity, bandwidth, introduced delay and resonance frequencies of coil prototypes
at room temperature.

With an electrical model where the individual proprieties are known, the effect of high temperature
on frequency response can be estimated, without the need to generate precise magnetic fields on

a high temperature chamber.

Custom 3D printed holder alignment of
sensor inside solenoid

 Designed for Mirnov coil prototypes

« 3D printed adaptors for smaller coils

Uncertainties under 0.3 % reached. Deviation from design of ~1% obtained for TPC sensors

EUROPEAN UNION Fundacio A f
European Structural and Investment Funds 7S F ‘ : I para a C1e11c1a ) | Ip n
Operational Programme Research, R, Cl4 ea Tecnologla / / INSTITUTO DE PLASMAS

Development and Education COUTH AND SPORTS E FUSAD NUCLEAR

scope input impedance, accurately predicting resonance frequencies
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